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Abstract. It is well known that the order in which the sites of a non-Abelian coupled map lattice model (as
the Olami-Feder-Christensen model) are updated determines the final configuration. In order to eliminate
this ambiguity one must use a parallel update. In this paper we present a simple sequential update that
is equivalent to the parallel one; we show that it obeys the natural branching structure of the avalanche.
We also show that the main effect of the other sequential methods, which do not obey the branching
structure of the avalanche, is to increase the revisitations of critical sites, which enhances the number of
large avalanches in the lattice.

PACS. 05.45.Ra Coupled map lattices – 05.65.+b Self-organized systems

Since the idea of self-organized criticality (SOC) was pro-
posed [1], a lot of simple models [2–5] have been suggested
to describe the threshold dynamics of open extended sys-
tems which evolve spontaneously towards a scale-invariant
state. In general, these models correspond to cellular au-
tomata or coupled maps defined on a lattice, in which
an avalanche is triggered when some site variable reaches
a threshold value, id est, when this site becomes unsta-
ble. For the majority of these models (known as non-
Abelian [6]), if two sites become unstable (critical) at the
same time during an avalanche, the final configuration will
depend on the order in which they are updated. To elim-
inate this ambiguity, the sites must be updated in a way
that became known in literature as the parallel (or syn-
chronous) update [7].

In this paper we present some particular sequential
updates, called by us pseudo-sequential, that are able
to reproduce the configurations obtained by the paral-
lel method, being equivalent to them. We show that the
other sequential ways of updating the sites, which do not
present this characteristic, increases the number of large
avalanches in the statistics of events and that this fact
is related to the revisitations of critical sites along an
avalanche; we conjecture that this phenomenon, even in
the correct parallel update, is an important mechanism for
the collective behavior of the model. We illustrate these
ideas using the Olami-Feder-Christensen (OFC) model.

The OFC slip-stick model was originally proposed to
describe the dynamics of earthquakes. It is a coupled map
model, defined on a two-dimensional lattice, whose dy-
namics is based on the Burridge-Knopoff model [8]. A real
variable Eij is associated to each site of the lattice. The
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system is driven by a global perturbation that slowly in-
creases the energy Eij in all sites of the lattice. This pro-
cess goes on until the energy of one site reaches a threshold
value Eth. This site becomes unstable and relaxes accord-
ing to the rules: {

Eij → 0
Enn → Enn + αEij

, (1)

where Enn is the energy of the four nearest-neighbors of
the site (i, j), and α ∈ [0, 1/4] is a parameter that controls
the degree of local conservation of energy. If one or more
nearest-neighbor sites become unstable as a consequence
of the relaxation rule (1), such rule is applied again and
this process goes on until all sites of the lattice become sta-
ble again (Eij < Eth ,∀ (i, j)). When α = 1/4, this model
is locally conservative. The avalanche size corresponds to
the number of times that the relaxation rule (1) is applied
since the avalanche has been triggered.

The differences between the sequential and the pseudo-
sequential updates can be observed in Figure 1. In the se-
quential update, after the updating of some critical site,
the search to verify the occurrence of another unstable site
on the lattice always starts from site (1, 1). It continues
following always the same order, imposed by the geom-
etry of the lattice, until the next critical site is found,
as it is shown in Figure 1a. This site is then immedi-
ately updated, and a new search starts, as always, from
site (1, 1); the search stops when all sites in the lattice
are stable (that indicates the end of an avalanche). In
the pseudo-sequential update, after the relaxation of some
critical site (i, j), the search for other critical sites goes on
from this site, starting at the site (i, j + 1), as it may be
seen in Figure 1b. When some new critical site is found,
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Fig. 1. The search’s scheme of critical sites during an
avalanche on a two-dimensional lattice if the update is: (a)
sequential; (b) pseudo-sequential.

it is immediately updated and the search goes on from
that point towards the end of the lattice. Only after that,
in order to complete the search, it goes back to site (1, 1)
until all lattice sites are stable.

In the parallel update, all sites which became criti-
cal after the relaxation of sites in the tth generation are
updated simultaneously. So the natural evolution of the
avalanche establishes a tree of generations, that we will
refer, from now on, as the natural hierarchy of genera-
tions. We will see that the pseudo-sequential update does
not violate the natural tree structure that appears in the
parallel update.

In order to illustrate the main differences between
these updates, and to show how the pseudo-sequential
update obey the natural hierarchy of generations of the
avalanche, let us analyze in detail an example of the evo-
lution of an avalanche in the OFC model, according to the
three ways of updating the lattice sites (parallel, pseudo-
sequential and sequential). In this example we show the
intermediate configuration of the avalanching process, af-
ter each time step. In all three cases we will begin from
the same initial configuration, defined on a small lattice,
(3 × 3), with Eth = 4 and α = 0.25. The underlined and
bold-faced sites correspond to the sites updated at that
time step.

Parallel Pseudo-sequential Sequential
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Fig. 2. The generation structure of the avalanche described in
the example, considering the usual parallel update of the OFC
model. Each branch of the tree corresponds to a generation of
the avalanche, in which the critical sites (represented by the
points) of the lattice are updated simultaneously. As it may
be seen in the example, this avalanche has six generations (it
takes six time steps for the complete avalanche evolution).
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The generation tree of this avalanche is shown in
Figure 2; this avalanche has six generations. The tree can
be constructed from the (six) steps of the avalanche ac-
cording to the parallel update. The points of the tree cor-
respond to critical sites; each branch of the tree defines
a new generation of the avalanche. If we also follow the
steps of the avalanche according to the other two updates,
it is possible to compare their sequences of critical sites
with the generations presented in Figure 2 (see Fig. 3a
and Fig. 3b).

As shown in Figure 3a, when we consider the pseudo-
sequential update, there is no critical site (i, j) of a gen-
eration t being updated before another critical site (k, l),
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Fig. 3. The sequence in which the critical sites relax, in the
avalanche of the example, when the update of the OFC model
is: (a) pseudo-sequential; (b) sequential. In both cases, the nu-
meration of the sites corresponds to the order that they are
updated and the dashed lines correspond to the generation
structure of the avalanche shown in Figure 2.

originated in a previous generation, and connected to the
site (i, j). We say that site (i, j) is connected to site (k, l)
if the former received energy from the latter in the parallel
update. If a site (i, j) of the generation t is updated be-
fore a site (k, l) of the generation t− 1 that is not connect
with it through the generation tree, the final result will
not change. For example, the site (2, 3) of the generation
t = 3 (which is marked in the example with ∗) is updated
before the site (3, 1) of the generation t = 2 but, because
there is not a connection between them in the generation
tree (see Fig. 2), the final microscopic configuration will
not be affected. If this simple rule is followed, the final
configuration of the lattice, after the avalanching process,
and the avalanche size (s = 9 in the example) are exactly
the same as the parallel update. Note that this does not
mean that the intermediate configurations (before the end
of the avalanche) are the same as in the parallel upgrade
(see the example again).

On the other hand, when we consider the usual se-
quential update, there are critical sites of a generation t
being updated before other critical sites of a generation
t− 1, to which they are connected in the generation tree.
For example, we see in Figure 3b that the site (1, 1) of
the generation t = 6 is updated before the site (2, 1) of
the generation t = 5; and, according to Figure 2, they are
connected sites since the site (1, 1) received energy from
the site (2, 1) in the parallel update. The same situation
occurs again with the site (2, 1) of generation t = 5 and

j�2 j�1 j j+1 j+2

i� 2 cN

i� 1 cNW bN cNE

i cW bW a bE cE

i + 1 cSW bS cSE

i + 2 cS

Fig. 4. The first three generations of an avalanche using the
parallel update: a is the first critical site and corresponds to
the generation 0; the sites b correspond to the generation 1
and the sites c, to the generation 2. We adopt the following
notation in order to localize the sites in relation to generation 0
of the avalanche. The subscripts N, S, E and W indicate north,
south, east and west, respectively. Analogously the subscripts
NE, NW, SE and SW indicate northeast, north-west, southeast
and south-west, respectively.

the site (2, 2) of generation t = 4. In all these cases, the
natural hierarchy of generations is violated and, as a con-
sequence, the final configuration of the lattice is different
from the configuration generated by the parallel update.
The avalanche size is also different. We can observe, in
this particular example, that the site (3, 2) became criti-
cal twice. We say that this site has been revisited along
that avalanche. As a consequence, in this example, the
avalanche size is s = 10 for the sequential update.

To show that the above example represents the general
case we will use both logical and numerical arguments.
First we will present some reasoning showing that no con-
figuration that naturally appears in the pseudo-sequential
algorithm violates the natural hierarchy of generations (in
which the sites are updated in the parallel algorithm).
Then we will give some numerical evidences that support
this reasoning.

Suppose that, in a lattice, the site (i, j) (site a in
Fig. 4) becomes critical, starting an avalanche. Suppose
also that the model is conservative (α = 0.25), and that
we have an hypothetical limit situation in which the en-
ergy Ek,l ≈ Ec for a cluster of sites around site a, so
that, when site a relaxes, all of its nearest neighbors (and
the nearest neighbors of them) will become critical. Such a
configuration maximizes the probability of finding a viola-
tion in the hierarchy of generations defined in the parallel
update. So, when (i, j), site a in Figure 4, relaxes, all of its
nearest neighbors, that are sites (i±1, j±1), become crit-
ical. These are the sites labelled bN , bE , bS and bW in
Figure 4, and make up the second generation of critical
sites in the parallel update. After that, all sites b relax
simultaneously, and sites cN , cNE , ... , cNW plus site
a again become critical, defining the third generation.
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Fig. 5. The Hamming distance between the configuration of the lattice obtained at the end of every avalanche using the
pseudo-sequential algorithm (in comparison with the parallel one). The inset shows the difference between the avalanche size
using the pseudo-sequential algorithm and the parallel one. For these numerical simulations, the lattice size is L = 100 and
α = 0.25.

We can stop in this third generation, without loss of
generality.

Now we can follow this avalanching process according
to the sequential and the pseudo-sequential algorithms. In
the sequential algorithm, after the relaxation of site a, the
next site to relax will be site bN (sites cN , cNE and cNW
will then become critical), followed by sites cN and cNW ,
both belonging to the third generation. The fact that site
cN relaxes before sites bE , bS and bW is not a problem,
because they are not connected in the sense defined before.
But note that site cNW is updated before site bW , from
which it receives some energy in the parallel update. This
inversion violates the natural hierarchy of generations and
the final configuration of the lattice (the configuration at
the end of the avalanche) will be different now, as clearly
shown in the example of the small lattice (3× 3).

Consider now the same process with the pseudo se-
quential algorithm. After site a, site bE will relax, followed
by sites cE , bS , cSE , and cS (note that site (i+ 1, j − 1),
that is, site cSW , has not become critical yet). In this case,
when a site of generation n+ 1 is updated, all connected
sites of generation n has already been updated. The reader
can follow this example further to convince himself of that.
It may be observed that, after the toppling of site cS , the
first critical site to be found by the search is not site cN ,
since, at this step of the avalanching process, this site has
not become critical yet; it only becomes critical after site
bN relaxes. So, after the toppling of site cS , when the
search starts again from site (1, 1), the first critical site to
be found is site bN . Only after the toppling of site bN ,
sites cN and cNW will become critical, but note that, now,
they will only be found by the searching algorithm in the

next time the search starts at site (1, 1). So, site cN will
not be updated before site bN .

This reasoning is still valid if we consider bigger
avalanches with more generations. It is also still valid if
some of the nearest (or next nearest) neighbors of site a
do not become critical.

Some numerical results of the Hamming distance, to
be presented in this section, confirm this fact. We cal-
culated numerically the Hamming distance between the
configurations of the lattice at the end of every avalanche,
in the parallel and both pseudo-sequential and sequential
algorithms. That is, we calculate

H ≡
∑
i,j

|Ei,j −E
′

i,j |

where the sum is over all sites of the lattice, and Ei,j , E′i,j
are the energy of site (i, j) after a parallel and a pseudo-
sequential (or sequential) updates, respectively. We also
analyzed the difference between the size of each avalanche,
d = s− s′ , during the same sequence of events, where s is
the size of an avalanche that evolved according to a par-
allel update, and s′ is the size of the same avalanche now
evolving according to a pseudo-sequential (or sequential)
update. The simulations were performed with double pre-
cision variables, in 100×100 lattices, with runs of 1 000 000
events in the pseudo-sequential case, and of 500 000 events
in the sequential case. The results are shown in Figures 5
and 6. We see that both H and d are rigorously zero in the
case of the pseudo-sequential algorithm, and clearly dif-
ferent from zero when the sequential update is employed.
To make sure this result was not a coincidence, we also
repeated the simulations with the pseudo-sequential al-
gorithm, now in smaller runs of 10 000 events, for 500
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Fig. 6. The Hamming distance between the configuration of the lattice obtained at the end of every avalanche using the
sequential algorithm (in comparison with the parallel one). The inset shows the difference between the avalanche size using the
sequential algorithm and the parallel one. For these numerical simulations, the lattice size is L = 100 and α = 0.25.

different initial conditions and observed exactly the same
behavior, i.e., both H and d are equal to zero.

After examining the configuration of the lattice at the
end of each avalanche, that gives the “microscopical” dif-
ference between the sequential and parallel updates, it is
interesting to analyze the statistical distribution of the
avalanche sizes. It is obvious, as we can see in Figure 7,
that there is no difference between the probability distri-
bution of avalanche sizes for the OFC model according to
the pseudo-sequential and parallel updates, since the final
state of the lattice, after each avalanche, are the same.
But another surprising result is that the critical exponent
of avalanche sizes, resulting from the sequential update, is
the same as the one resulting from the parallel update (see
Fig. 7). The different behavior only appears in the cut off
region of the distribution, where we may see an increase
of the relative number of large avalanches.

Since the number of large avalanches increases when
the lattice sites are updated according to a sequential al-
gorithm, the mean value of the avalanche size 〈s〉 also
increases. Comparing this value with the percentage of
avalanches with revisited critical sites, we have some evi-
dences that this behavior is related to the increase in the
probability of having a critical site revisited. The effect
of the update in the mean value of the avalanche size be-
comes even more evident when the value of parameter α is
lower, since, in this case, the occurrence of avalanches with
revisited sites is not a predominant effect. For α = 0.25,
for instance, the relative deviation of the 〈s〉 between the
parallel and sequential update is about 5% in contrast
with the results shown in Table 1 for α = 0.22.

This comparative analysis, between the parallel and
the sequential algorithms clears up the relationship be-
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Fig. 7. Probability distribution of the avalanche sizes (log-log
graphic) of OFC model in the squared lattice with L = 100
and α = 0.25 considering the parallel, pseudo-sequential and
sequential updates.

tween the revisitation of critical sites and the occur-
rence of large avalanches without the enlargement of the
clusters of sites that take part in the avalanching pro-
cess. Even in the non-ambiguous parallel update, for high
values of parameter α, there is a significant number of
large avalanches with revisited critical sites. It is believed
that, in the OFC model, the aperiodicity of boundary
conditions [10] and the initial disorder [11] are essential
elements for the emergence of SOC. This “noise” destroys
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Table 1. Analysis of the mean value of avalanche size and
the percentage of critical sites revisited for the OFC model
considering the parallel and sequential updates; the values of
parameter α, the lattice size and the total number of avalanches
are, respectively α = 0.22, L = 100 and N = 2× 106.

Parallel Sequential Relative deviation

〈s〉 14.5 ± 0.3 35.9 ± 0.4 147.2%

prev 1.5% 3.4% 122.1%

the natural tendency of the model to synchronize, allow-
ing the occurrence of large avalanches and the appearance
of a power-law behavior. It is also a well known result that
the random version of the OFC model [12], whose dynam-
ical rules do not obey a lattice structure, does not display
a critical behavior in the non conservative regime. We ob-
serve that the revisitation of sites also collaborates to the
destruction of the synchronized behavior. This mechanism
is not an effect of the boundary conditions, since it may
be frequent even for avalanches which do not reach the
border of the lattice.

Recently the presence of SOC in the OFC model in
the dissipative regime, even with open boundary condi-
tions, has been discussed [13]; it has been suggested that
the OFC model has an “almost critical” [9] behavior when
α < 0.25. If this is true, the above elements, including the
revisitation of critical sites, are also an important ingre-
dient for the “almost critical” behavior, inasmuch as this
behavior seems also to be induced by the presence of noise.

In conclusion, we showed a simple update (the
pseudo-sequential one) of the non-Abelian OFC model
that is able to reproduce the results obtained by
the usual parallel update. By this we mean that not
only the statistics of events (avalanche sizes, for in-
stance) are equal, but that, step by step in time,
the system evolves through the same intermediate
metastable states (configurations of the lattice after
each avalanche). We also observed that the (ambiguous)

sequential update, although displaying a power-law behav-
ior with the same critical exponent obtained by the par-
allel algorithm, enhances the number of large avalanches,
that distorts the cutoff region of the distribution. We re-
lated this increased number of large avalanches to a signif-
icant increase in the number of avalanches with revisited
sites during the avalanching process.

We acknowledges the useful discussions with Osame Kinouchi
about the OFC model. STRP thanks a fellowship from the pro-
gram CAPES/PICD and the hospitality of Instituto de F́ısica
of Universidade de São Paulo.
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